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The oscillating plate problem in magnetohydrodynamics 
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(Received 30 July 1969) 

The oscillating plate problem is investigated for the case of an incompressible, 
electrically conducting fluid in the presence of a magnetic field. The boundary 
conditions are examined in detail, and a solution is found with the aid of suitable 
approximations. The motion of the fluid is shown to consist mainly of magneto- 
hydrodynamic waves, but there is also a viscous boundary layer in which the 
solution agrees with that given by other writers. 

1. Introduction 
Certain difficulties occur in the theory of magnetohydrodynamic boundary 

layers which may possibly be resolved by an examination of the corresponding 
linear problem in which the fluid motion is caused by an infinite flat plate moving 
in its own plane. Ludford (1’959) has considered the Rayleigh problem (impulsive 
motion of the flat plate) including magnetohydrodynamic effects, and in the 
present note the related case is examined in which the plate executes simple 
harmonic motion and the flow is quasi-steady. There is an advantage in con- 
sidering this case, since the mathematical difficulties encountered by Ludford are 
then avoided. 

The case in which the kinematic viscosity is small compared with the magnetic 
diffusivity is examined in detail, since this is likely to be the situation in experi- 
mental work. The most interesting effect found is the production of magneto- 
hydrodynamic waves which become diffused due to the finite electrical con- 
ductivity of the fluid. A viscous boundary layer occurs at the surface of the plate, 
and the solution in this region agrees exactly with that found by Ong & Nicholls 
(1959), using an approximate equation given by Rossow (1957). The reasons for 
this agreement and also the approximations involved in Ong & Nicholls’ 
solution are discussed. 

The implications of the assumption made by Ludford, that the boundary 
consists of material having infinite electrical conductivity, are examined in 
detail, and necessary conditions for its validity are given. 

__ __ _ ~ _ _ _ _ _  - - ~~ 

2. Equations and boundary conditions 

ducting fluid in the absence of a pressure gradient are 
The equations* describing plane laminar motion of an incompressible con- 

* M.K.S. units are used throughout. Since Ludford has given a neat form of the solution 
of the algebraic equation (l l) ,  his notation is used for convenience. 
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where the motion is in 
current j are given by 

V =  
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the x-direction, and the velocity V, magnetic field H, and 

(u, 0,0), H = (H,  Ho, O), j = (0, O A .  (3) 

Ho is a constant magnetic field perpendicular to the plane of motion, which is 
used to define an Alfv6n velocity as follows: 

A: = pHg/p. (4) 

There are two diffusivities involved in the equations, namely the kinematic 
viscosity v, and the magnetic diffusivity, 7, which is defined as 

where ,u is the permeability and v the conductivity of the fluid. The equation for 
the pressure is 

7 = l/PO-, (5) 

,aY(P+F) = 0, (6) 

(7) 
aH 

and the current is given by j = - - - .  
aY 

We shall consider a quasi-steady motion, neglecting transients, in which the 
time-dependent part of the solution is a factor eiwt. Hence the operator ajat in 
equations (1)  and (2) can be replaced by iw ,  and it is then easily shown that the 
general solution of the equations is 

u = [A emu + B e-my + C eny + D e-ng] eiwt, ( 8 )  

where A,  B, C and D are arbitrary constants and r = ~f: m, & n, are the roots of the 
quartic 

Ludford has shown that 

(7r2 - i w )  (vr2 - i w )  - Agr2 = 0. (11)  

m = (a  + ibw)* + (a  + icw)*,  (12) 
n = (a  + ibw)* - (a  + icw)+, (13) 

where a = ?  b = (7* + ~ * ) ~ / 4 7 ~ ,  c = (74 - V * ) ~ / P ~ V .  (14) 47v' 
A2 

Under laboratory conditions it is usually found that 7 Bv*, and in these 
circumstances, b and c are very nearly equal. Hence we can write 

b = d ( l + B ) ,  ~ = d ( l - - ~ ) ,  

where d = 1 / 4 ~ ,  s = 2(~/7)4 ,  

and so 

* For instance, V / T  z for mercury. 
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Substituting from ( l a ) ,  and neglecting all but the terms of lowest order in E ,  

equations (12) and (13) give 
m M (At  + iwy)+/ , / (yv) ,  (15) 

n x io/(A$+iwy)*. (16 )  

Thus, in the general solution, the terms with exponent (iwt my) contain the 
combination y/v&, showing that there is an ordinary viscous boundary layer 
outside of which the fluid is affected only by the oscillations of the magnetic field. 
The terms with exponent (id ~f: ny) are independent of v and represent diffused 
Alfvbn waves moving along the lines of force of the undisturbed field (0, Ho, 0). 

The simplest example of laminar periodic motion is that caused by a solid 
boundary at  y = 0 which oscillates in the x-direction with velocity Ueid. The 
fluid is assumed to extend to infinity in y > 0, and the space y < 0 is occupied by 
solid material of uniform composition. We shall use primes to denote quantities 
in the solid region, which contains a magnetic field of the form (H’,  H i ,  0), where 
Hb is constant and H’ is an induced field satisfying the equation 

The appropriate solution of this equation which vanishes 
values of y i s  

H’ = F e x , [ ( $ y + i [ w t +  ($)*Y]] ,  

(17) 

for large negative 

where F is a further arbitrary constant. 
The disturbance must vanish as y tends to infinity, and so A and C must be 

zero since the real parts of m and n are positive. We are therefore required to 
determine three constants, namely B, D and F ,  from the conditions at  the 
boundary y = 0. 

The first condition is that there should be no slip at the boundary, that is 

u = u‘ = lJeiWt on y = 0. (19) 

There are two conditions on the magnetic field, requiring that the normal com- 
ponent of pH and the tangential component of H should be continuous. Hence 

and 

PHO = $Hi ,  
H = H’ on y = O .  

The remaining condition is on the tangential component of the electric field, which 
must also be continuous. Thus 

which reduces, on using (19) and (20), to 

on y = 0. 
l a H  1 aH’ - -=--  
g a y  g’ ay 

The three conditions (19), (21) and (22) are sufficient to determine the three 
constants B, D and F. 

7-2 
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3. Simplifying approximations 
A simplified form of these boundary conditions is possible under certain 

circumstances. First, it can be seen from (18) that the field in the solid is con- 
fined* to a layer near the surface with thickness of order (y ' /w)* .  Similarly the 
field induced in the fluid is confined to a layer with thickness at  least of order 
(q/w)* .  Thus if 7 +f, the field induced in the solid can be neglected, and the 
current associated with this induced field can be assumed to form a current sheet 
on the boundary which allows a discontinuity in the field. In  this case, F does not 
have to  be calculated, and the two conditions required to find Band Dare (19) and 

("") aY 2/=0 = 5 d (%)'&/4H(o). 211') (23) 

The second possible simplification is found by considering the ratio 

where L is some typical length. This is found to be of the order of 

provided 4cl< p.ip', (24) 
the boundary condition (23) can be taken to be 

- = 0  on y = O ,  
aH 
aY 

which is the condition used by Ludford. In  general p and p' will be approximately 
equal, unless the solid is of a ferromagnetic material, when p' will be much larger 
than p. Whatever the case, (24) is a sufficient condition for 9 3 f, and for the 
boundary conditions to be (19) and (25) with F zero. If (24) is not satisfied, but 
q 9 f ,  then the boundary conditions are (19) and (23) with F zero. Finally, if 7 is 
not much greater than f ,  the boundary conditions must be (19), (22) and (23), 
and F is not zero. 

We shall consider a case in which the condition (24) holds, and it is easily 
found from (19) and (25) that 

B = (vn2-io) U/v(n2-m2), 

D = (iw - vm2) U/v(n2 - m2). 

Hence 

When 17 9 v, m and n are given by (15) and (16), and these solutions for u and 
H become 

* The 'skin effect'. 
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The solutions in the viscous boundary layer are found by taking the limit as y and 
Y tend to zero while y/v& remains finite. These boundary layer solutions are 

UH, eiWt 
H =  

A ,  ( 1 + -  ;;)+ . 

This expression for ‘u is exactly that found by Ong & Nicholls, using the equation 

(33) 

first given by Rossow. This confirms the result found by Ludford, that ROSSOW’S 
equation gives the correct solution in the viscous boundary layer provided 7 % v. 
The truth of this can be found from an examination of equation ( l ) ,  for 

aH a2H 
=el,, 

aY 

if U L  -4 7, (33) 

where L is a length typical of the region under consideration. For the viscous 
i3H 

boundary layer, L is v /U ,  and (33) is simply 7 % v. Neglecting the term -- , 
at 

equation (1) can be integrated to give 

aH 
7 - = Ha( UeiWt - u) , 
dY 

(34) 

using the boundary condition ( 2 5 ) )  and substitution of this result into equation (a )  
yields (32). The chief drawbacks of Rossow’s equation are that it cannot be used 
to give the solution for H ,  nor does it give any indication of the effect of the 
magnetic field on the motion of the fluid outside the viscous boundary layer. 
Because of this, ROSSOW’S approach will fail in many cases in which the flow 
outside the viscous boundary layer is affected by the magnetic field, as it gives no 
indication of the correct condition at the outer edge of the boundary layer. 
There may also be some doubt about the validity of using ( 2 5 )  as a boundary 
condition in some circumstances. 

The solution for the flow and field outside the boundary layer are found from 
(28) and (29) by allowing v to tend to zero whilst y remains finite, giving 

U =  

H =  

(35) 
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Thus the disturbance is a diffused Alfvdn wave propagating in the direction of 
increasing y. This can be seen more readily if a low frequency (w < Ai/q) approxi- 
mation is made, for the above equations then become 

showing that the fluid and field move together, and the disturbance is an Alfvdn 
wave which is damped out over a distance of order 2Ai/u2q. This is the result 
obtained by Alfvdn (1950, p. 82) in an investigation of the effect of finite con- 
ductivity of the fluid on plane magnetohydrodynamic waves. 
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employers, for making my period of study in Manchester possible, and also to 
Professor M. J. Lighthill, F.R.S., for his encouragement of this work. 
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